On investigating GMRES convergence using unitary matrices
نویسندگان
چکیده
منابع مشابه
Convergence of GMRES for Tridiagonal Toeplitz Matrices
Abstract. We analyze the residuals of GMRES [9], when the method is applied to tridiagonal Toeplitz matrices. We first derive formulas for the residuals as well as their norms when GMRES is applied to scaled Jordan blocks. This problem has been studied previously by Ipsen [5], Eiermann and Ernst [2], but we formulate and prove our results in a different way. We then extend the (lower) bidiagona...
متن کاملConvergence of the shifted QR algorithm for unitary Hessenberg matrices
This paper shows that for unitary Hessenberg matrices the QR algorithm, with (an exceptional initial-value modification of) the Wilkinson shift, gives global convergence; moreover, the asymptotic rate of convergence is at least cubic, higher than that which can be shown to be quadratic only for Hermitian tridiagonal matrices, under no further assumption. A general mixed shift strategy with glob...
متن کاملNew convergence results on the global GMRES method for diagonalizable matrices
In the present paper, we give some new convergence results of the global GMRES method for multiple linear systems. In the case where the coefficient matrix A is diagonalizable, we derive new upper bounds for the Frobenius norm of the residual. We also consider the case of normal matrices and we propose new expressions for the norm of the residual. AMS subject classification: 65F10.
متن کاملImplementing Unitary 2-Designs Using Random Diagonal-unitary Matrices
Unitary 2-designs are random unitary matrices which, in contrast to their Haar-distributed counterparts, have been shown to be efficiently realized by quantum circuits. Most notably, unitary 2-designs are known to achieve decoupling, a fundamental primitive of paramount importance in quantum Shannon theory. Here we prove that unitary 2-designs can be implemented approximately using random diago...
متن کاملComputable Convergence Bounds for GMRES
The purpose of this paper is to derive new computable convergence bounds for GMRES. The new bounds depend on the initial guess and are thus conceptually different from standard “worst-case” bounds. Most importantly, approximations to the new bounds can be computed from information generated during the run of a certain GMRES implementation. The approximations allow predictions of how the algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2014
ISSN: 0024-3795
DOI: 10.1016/j.laa.2014.02.044